A flexible sequential Monte Carlo algorithm for shape-constrained regression

Kenyon Ng¹, Kevin Murray², Berwin A. Turlach¹

 $^{
m 1}$ Department of Mathematics and Statistics, The University of Western Australia.

² School of Population and Global Health, The University of Western Australia.

THE UNIVERSITY OF

Motivation

Height of a muskmelon at 15°C height (scaled) 2 4 0.9

- ightharpoonup This dataset records the height of a muskmelon (y) over a period of time (x).
- We fit a rational function model

$$r(x; \beta) = \frac{\beta_1 + \beta_2 x + \beta_3 x^2}{1 + \beta_4 x + \beta_5 x^2}.$$

day (scaled)

ightharpoonup The eta is obtained by minimising a loss function

$$\ell(\boldsymbol{\beta}) = \sum \{y_i - r(x_i; \boldsymbol{\beta})\}^2.$$

- Muskmelon do not usually grow shorter over time! Should not be decreasing when x > 0.9.
- $ightharpoonup r(x; \beta)$ should be monotonically increasing when $x \in [0.35, 1]$.

A constrained minimisation problem

- ightharpoonup The β needs to satisfy:
- ▶ $\frac{\partial}{\partial x}r(x;\beta) \ge 0$ for all $x \in [0.35,1]$;
 ▶ $r(x;\beta) < \infty$ for all $x \in [0.35,1]$.
- ► This is challenging! There are infinite number of inequality constraints.
- Fortunately, we can build an indicator function

$$\mathbb{1}(\boldsymbol{\beta}) = \begin{cases} 1 & \text{if } \boldsymbol{\beta} \text{ satisfies the shape constraints;} \\ 0 & \text{otherwise.} \end{cases}$$

- Now we have a constrained minimisation problem. Find the global minimiser β^* of $\ell(\beta)$ subject to $\mathbb{1}(\beta^*) = 1$.
- ▶ [1] shows that

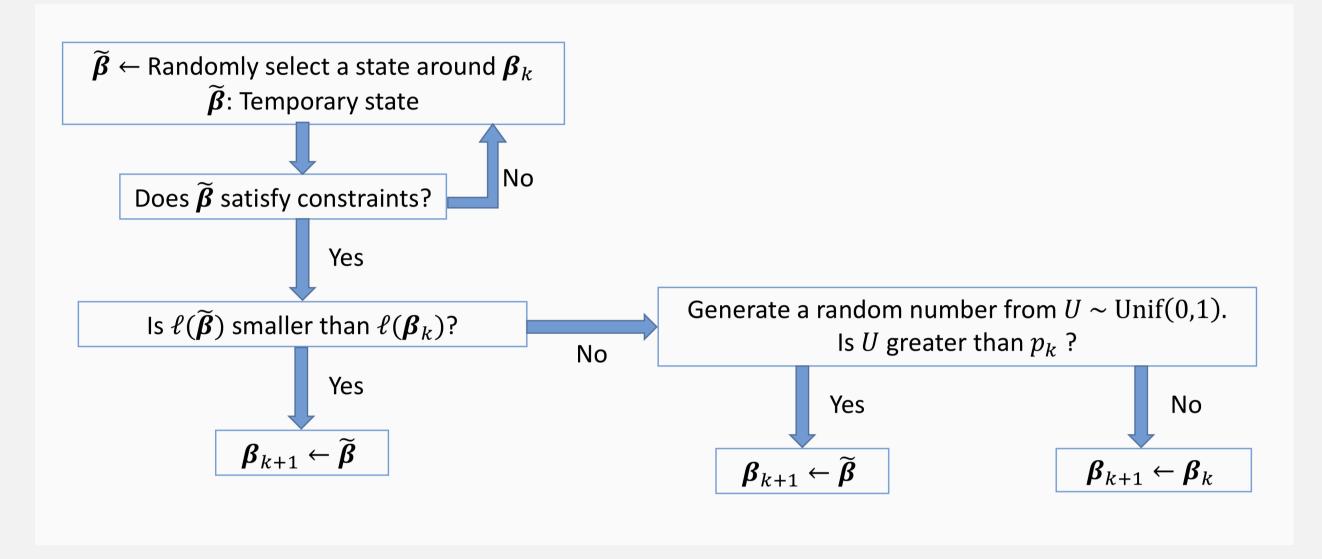
$$\pi(\boldsymbol{\beta}) \propto \exp\left\{-\frac{\ell(\boldsymbol{\beta})}{T}\right\} \mathbb{1}(\boldsymbol{\beta})$$

will converge to a Dirac delta function $\delta(\beta - \beta^*)$ when $T \to 0$.

- If we can sample from $\pi(\beta)$ with small T, we will get β^* .
- We have converted a regression problem to a sampling problem.

Metropolis-Hastings algorithm [2, 3]

- ▶ Use Markov chain Monte Carlo (MCMC) to sample from $\pi(\beta)$.
- ► Idea: simulate a Markov chain with an invariant distribution of $\pi(\beta)$ for a long enough period.
- First attempt: Metropolis-Hastings (a type of MCMC) to simulate this Markov chain. The flow chart at k^{th} iteration is illustrated:



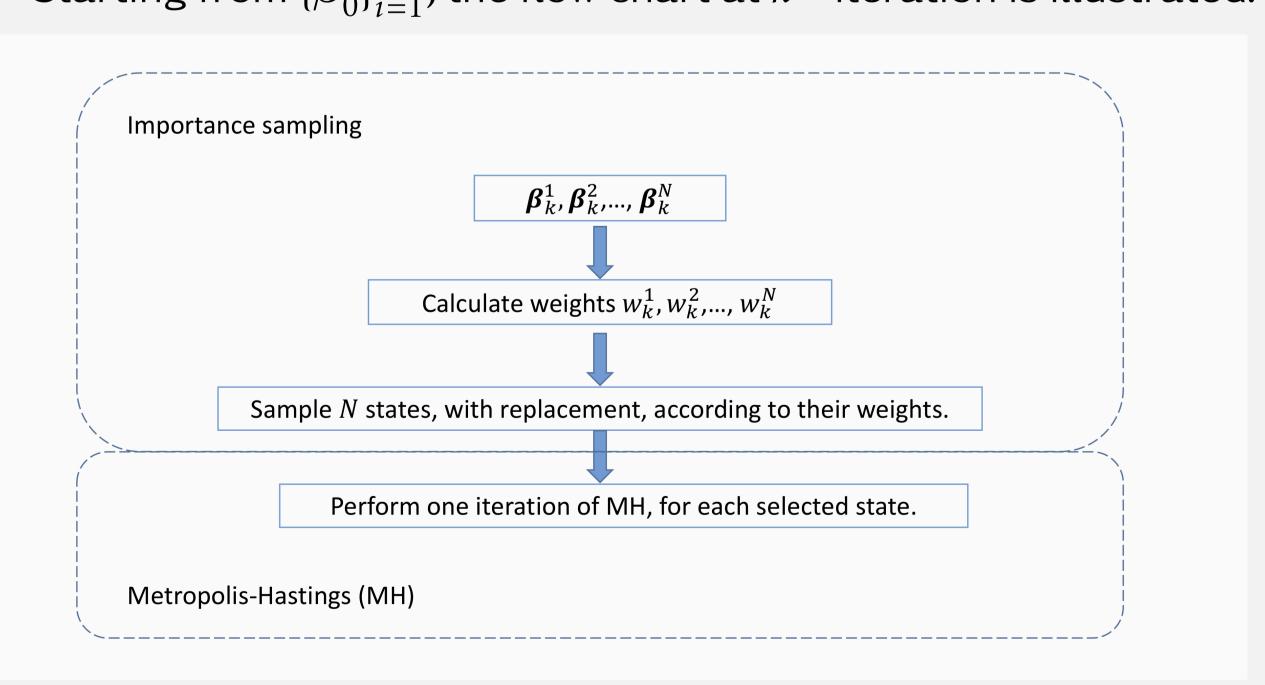
- ▶ Issue: p_k is small when T is small. The chain will barely move (i.e. $\beta_{k+1} \leftarrow \beta_k$ always happens).
- \blacktriangleright We can start with a large T and decrease it after each iteration.

Sequential Monte Carlo sampler [4]

ightharpoonup Decreasing T after each iteration \Longrightarrow sampling from a sequence of distributions $\pi_k(\beta)$

$$\pi_k(\boldsymbol{\beta}) \propto \exp\left\{-\frac{\ell(\boldsymbol{\beta})}{T_k}\right\} \mathbb{1}(\boldsymbol{\beta})$$

- Second attempt: Sequential Monte Carlo (SMC) sampler, a more efficient way of running multiple Metropolis-Hastings algorithms.
- Starting from $\{\beta_0^i\}_{i=1}^N$, the flow chart at k^{th} iteration is illustrated:



- ► SMC sampler can be seen as a two step process: importance sampling and a Metropolis-Hasting minimisation step.
- ▶ The weight of β_k^i , w_k^i , is inversely related to $\ell(\beta_k^i)$.
- \blacktriangleright β_k^i with a lower $\ell(\beta_k^i)$ has a better chance of getting minimised.

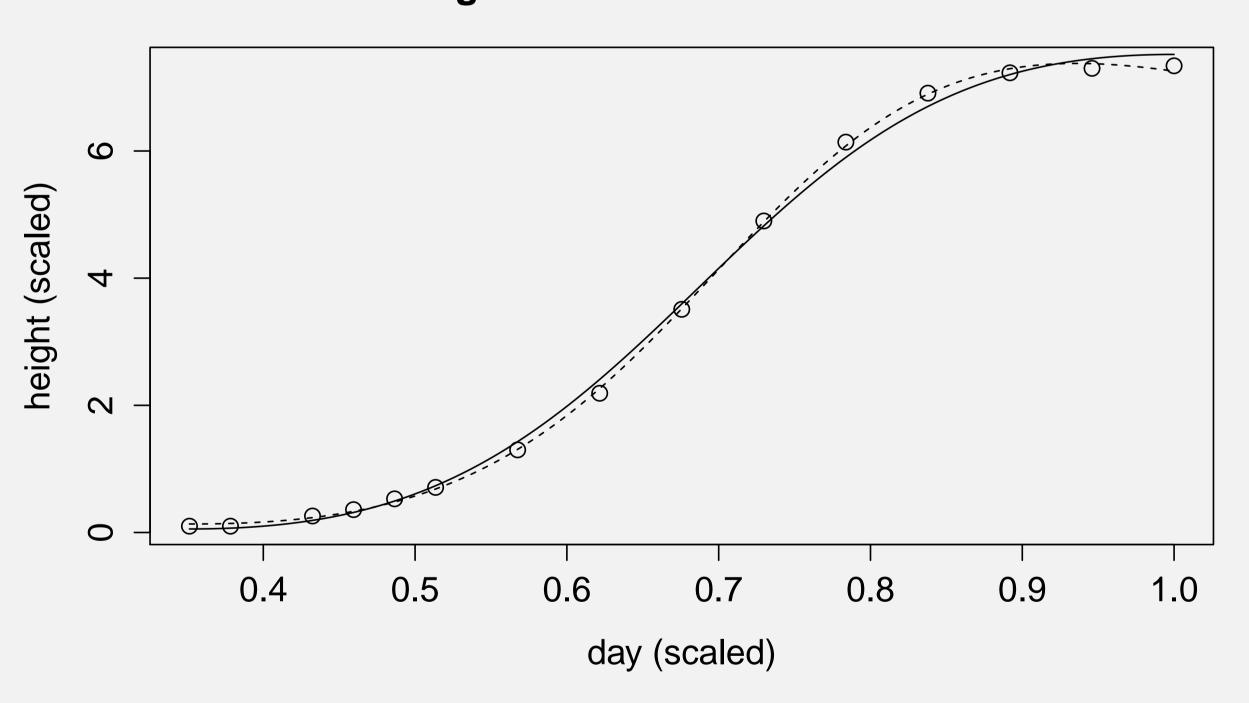
A note on the temperature

- ▶ The only difference between $\pi_k(\beta)$ and $\pi_{k+1}(\beta)$ is T.
- ▶ If $\pi_k(\beta)$ and $\pi_{k+1}(\beta)$ are too close, computational resources are wasted.
- ▶ If $\pi_k(\beta)$ and $\pi_{k+1}(\beta)$ are too far, the algorithm will not converge to β^* .
- Convergence conditions for the SMC sampler [5]:
- $ightharpoonup \left| \frac{1}{T_k} \frac{1}{T_{k+1}} \right|$ is monotonically decreasing; $ightharpoonup T_k o 0.$
- ► In practice, these conditions can be relaxed.

Results

- ► Run SMC sampler 40 times.
- The temperature follows $T_k = \frac{\left|\ell(\beta_k^*)\right|}{1 + 0.95(k-1)^2}$, β_k^* is the best β observed up until k^{th} iteration.

Height of a muskmelon at 15°C



Dotted line: the unconstrained curve; solid black: the best constrained curve out of the 40 estimates.

References

- [1] H. Edwin Romeijn and Robert L. Smith. Simulated annealing for constrained global optimization. Journal of Global Optimization, 5(2):101–126, Sep 1994.
- [2] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.
- [3] Marco Locatelli. Simulated annealing algorithms for continuous global optimization. In *Handbook* of global optimization, pages 179-229. Springer, 2002.
- [4] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.
- [5] Enlu Zhou and Xi Chen. Sequential Monte Carlo simulated annealing. Journal of Global *Optimization,* 55(1):101–124, 2013.