A flexible sequential Monte Carlo algorithm for shape-constrained regression

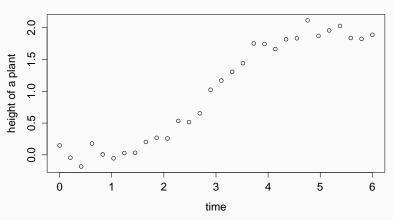
Kenyon Ng, with Kevin Murray, Berwin A. Turlach

4 September 2018

Department of Mathematics and Statistics, The University of Western Australia.

A rational function model

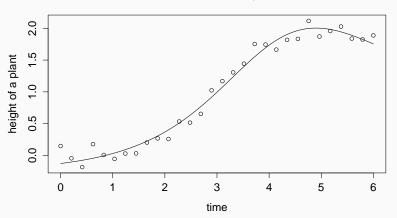
A simulated dataset with a sigmoidal trend



Model:
$$r(x; \beta) = \frac{\beta_1 + \beta_2 x}{1 + \beta_3 x + \beta_4 x^2}$$

Least squares

A simulated dataset with a sigmoidal trend



Minimise residual sum of squares $RSS(\beta) = \sum \{y_i - r(x_i; \beta)\}^2$

Issues

In general,

- regression is equivalent to a minimisation problem;
- shape-constrained regression is equivalent to a constrained minimisation problem;
- example: find a least squares $r(x; \beta)$ and monotonic increasing when $x \in [0, 6]$, same as minimise RSS (β) subject to $\frac{\partial}{\partial x} r(x; \beta) \ge 0$ for all $x \in [0, 6]$;
- infinite inequality constraints to satisfy!

Goals

- A curve fitting algorithm that works with:
 - any loss function $\ell(\beta)$, e.g. RSS, Tukey's biweight;
 - a majority of shape constraints.
- Construct $\mathbb{1}_{\mathcal{S}}(\beta)$ where $\mathcal{S} \coloneqq \{\beta | \beta \text{ that satisfies shape constraints} \}$.
- Minimise $\ell(\beta)$ subject to $\beta \in \mathcal{S}$.

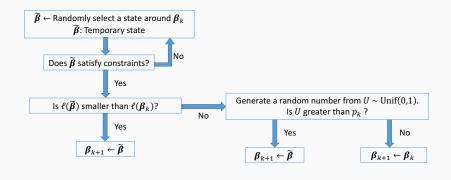
A MCMC approach to minimisation

- Construct a Boltzmann distribution $\pi(\beta) \propto \exp\left\{-\frac{\ell(\beta)}{T}\right\} \mathbb{1}_{\mathcal{S}}(\beta)$.
- When $T \to 0$, $\pi(\beta)$ converges to a degenerate distribution with point mass at β^* , the global minimum.¹
- If we can sample from $\pi(\beta)$, we are done.
- Use Markov chain Monte Carlo to sample from $\pi(\beta)$.

¹H. E. Romeijn and R. L. Smith. "Simulated annealing for constrained global optimization". In: *Journal of Global Optimization* 5.2 (1994), pp. 101–126.

Metropolis-Hastings

At k^{th} iteration of the Markov chain



Metropolis-Hastings

• The acceptance probability p_k is given by

$$p_k = \min \left\{ 1, \exp \left\{ -\frac{\ell(\tilde{oldsymbol{eta}}) - \ell(oldsymbol{eta}_k)}{T}
ight\}
ight\}$$

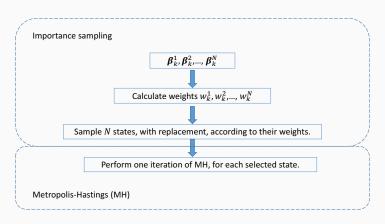
- When the temperature T is low, p_k is always 1 or almost 0.
- Especially true in the beginning, as $\ell(\tilde{\beta}) \ell(\beta_k)$ is usually large.
- Likely to converge to a local minimum.
- In practice:
 - start T with a high value and decrease after each iteration;
 - simulate multiple chains to speed up the process.

Sequential Monte Carlo

- Effectively sampling from a sequence $\pi_k(oldsymbol{eta}) \propto \exp\left\{-\frac{\ell(oldsymbol{eta})}{T_k}\right\} \mathbb{1}_{\mathcal{S}}.$
- Sampling from $\pi_0(\beta)$ is easy, $\pi_\infty(\beta)$ is difficult.
- Sequential Monte Carlo sampler to the rescue.
- Designed to sample this type of distribution sequence.

Sequential Monte Carlo

At kth iteration

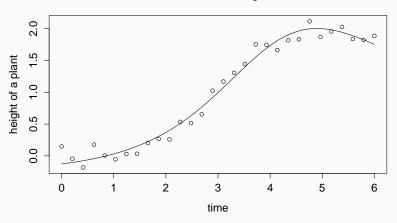


A note on the temperature

- The only difference between $\pi_k(\beta)$ and $\pi_{k+1}(\beta)$ is temperature.
- $\pi_k(\beta)$ and $\pi_{k+1}(\beta)$ are too close,
 - computational time wasted.
- $\pi_k(\beta)$ and $\pi_{k+1}(\beta)$ are too far,
 - will not converge.
- Convergence conditions:
 - $-\left|\frac{1}{T_k}-\frac{1}{T_{k+1}}\right|$ is monotonically decreasing;
 - $T_k \rightarrow 0$.

A monotonic rational function model

A simulated dataset with a sigmoidal trend

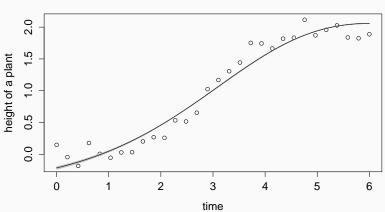


Model:
$$r(x; \beta) = \frac{\beta_1 + \beta_2 x}{1 + \beta_3 x + \beta_4 x^2}$$
 Shape: Monotonic increasing

Algorithm specs

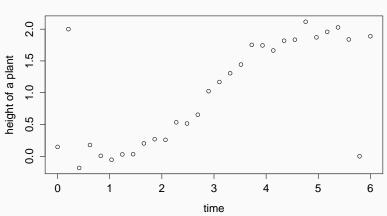
- Loss function $\ell(\beta) = \sum \{y_i r(x_i; \beta)\}^2$
- ullet Cooling schedule $T_k = rac{|\ell(oldsymbol{eta}_k^*)|}{1+0.5(k-1)^2}$
- Run 100 times.

Monotonic least squares curves



A dataset with outliers





Robust regression

In the presence of outliers, we minimise Tukey's biweight function:

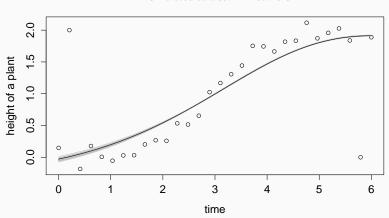
$$\ell(\boldsymbol{\beta}) = \sum \rho \left(y_i - r(x_i; \boldsymbol{\beta}) \right)$$

where

$$\rho(u) = \begin{cases} \frac{4.685^2}{6} \left(1 - \left(1 - \left(\frac{u}{4.685} \right)^2 \right)^3 \right) & |u| \le 4.685, \\ \frac{4.685^2}{6} & |u| > 4.685. \end{cases}$$

Tukey's biweight

A simulated dataset with outliers



Conclusion and future work

A generic algorithm for constrained optimisation.

Future works:

 Explore different sampling techniques (e.g. parallel tempering, Hamiltonian Monte Carlo). Thank you for your attention!